
Hadoop: Past and Present

Andrew Wang | Software Engineer
April 29, 2013

About Me

2

• 2010: BS CS UVa

• 2012: MS CS UC Berkeley

• AMP Lab alumni

• Advised by Ion Stoica

• Now: HDFS team at Cloudera

Outline

3

• State of databases in 1999

• Why is Hadoop displacing DB technology?

• Core stack

• HDFS and MapReduce

• Rest of the Hadoop ecosystem

• HBase, Pig, Hive, Oozie, Zookeeper, Flume,
Impala, …

4

5

Indexing the Web

6

• Web is huge

• Hundreds of millions of pages in 1999

• How do you index it?

• Crawl all the pages

• Rank pages based on relevance metrics

• Build search index of keywords to pages

• Do it in real-time!

7

Databases in 1999

8

1. Buy a really big machine

2. Install an expensive DBMS on it

3. Point your workload at it

4. Hope it doesn’t fail

5. Ambitious: buy another really big
machine as a backup

9

Database Limitations

10

• Didn’t scale horizontally

• High marginal cost ($$$)

• No real fault-tolerance story

• Vendor lock in ($$$)

• SQL unsuited for search ranking

• Complex analysis (PageRank)

• Unstructured data

Google Does Something Different

11

• Designed their own storage and
processing infrastructure

• Google File System and MapReduce

• Goals: KISS

• Cheap

• Scalable

• Reliable

Google Does Something Different

12

• It worked!

• Powered Google Search for many years

• General framework for large-scale batch
computation tasks

• Still used internally at Google to this day

Google’s messages from the future

16

• Google was benevolent enough to publish

• 2003: Google File System (GFS) paper

• 2004: MapReduce paper

• Already mature technologies at this point

Google’s messages from the future

17

• Community didn’t get it immediately

• DB people thought it was silly

• Non-Google weren’t at the same scale yet

• Google had little interest in releasing GFS
and MapReduce

• Business was ads, not infrastructure

Birth of Hadoop

18

• Doug Cutting and Mike Cafarella

• Nutch
• Open-source search platform

• Ran into scaling issues
• 4 nodes

• Hard to program

• Hard to manage

• Immediate application for GFS and MR

Birth of Hadoop

19

• 2004-2006: Implemented GFS/MR and
ported Nutch to it

• 2006: Spun out into Apache Hadoop

• Name of Doug’s son’s stuffed elephant

Birth of Hadoop

20

Summary

21

• The web is huge and unstructured

• Databases didn’t fit the problem

• Didn’t scale, expensive, SQL limitations

• Google did their own thing: GFS + MR

• Hadoop is based on the Google papers

22

HDFS and MapReduce

HDFS

23

• Based on GFS

• Distributed, fault-tolerant filesystem

• Primarily designed for cost and scale

• Works on commodity hardware

• 20PB / 4000 node cluster at Facebook

HDFS design assumptions

24

• Failures are common

• Massive scale means more failures

• Disks, network, node

• Files are append-only

• Files are large (GBs to TBs)

• Accesses are large and sequential

Quick primers

25

• Filesystems

• Hard drives

• Datacenter networking

Quick filesystem primer

26

• Same concepts as the FS on your laptop
• Directory tree

• Create, read, write, delete files

• Filesystems store metadata and data
• Metadata: filename, size, permissions, …

• Data: contents of a file

• Other concerns
• Data integrity, durability, management

Quick disk primer

27

• Disk does a seek for each I/O operation

• Seeks are expensive (~10ms)

• Throughput / IOPS tradeoff

• 100 MB/s and 10 IOPS

• 10MB/s and 100 IOPS

• Big I/Os mean better throughput

Quick networking primer

28

Rack

Top-of-rack switch

Core switch

Quick networking primer

29

40 Gbit

10 Gbit

Quick networking primer

30

Fast
within
a rack

Slow across
racks

HDFS Architecture

31

DataNode

Metadata

Paths, filenames,
file sizes, block
locations, …

NameNode

DataNode DataNode DataNode

HDFS Architecture

32

DataNode

Data

Blocks, checksums

NameNode

DataNode DataNode DataNode

HDFS Architecture

33

DataNode

NameNode

DataNode DataNode DataNode

Rack 1 Rack 2

HDFS Architecture

34

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

HDFS Write Path

35

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

Client

create(“/tmp/myfile”)

Write to
[DN4,DN3,DN2]

[DN3,DN2]
[DN2]

HDFS Write Path

36

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

Client

data data data

Write Pipeline

HDFS Write Path

37

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

Client

close()

NN stores DN
locations

HDFS Write Path

38

• Talk to NameNode

• Store metadata for new file

• Get topology-aware list of DataNodes

• Setup the write pipeline

• Stream data to pipeline

• Tell NameNode when done

HDFS Read Path

39

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

Client

open(“/tmp/myfile”,“r”)

Read from
[DN4,DN3,DN2]

read data

HDFS Fault-tolerance

40

• Many different failure modes

• Disk corruption, node failure, switch failure

• Primary concern

• Data is safe!!!

• Secondary concerns

• Keep accepting reads and writes

• Do it transparently to clients

HDFS DataNode Failure

41

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

Client

open(“/tmp/myfile”,“r”)

Read from
[DN4,DN3,DN2]

read
read

HDFS NameNode Failure

42

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

Client

open(“/tmp/myfile”,“r”)

NameNode

open(“/tmp/myfile”,“r”)

Other HDFS features

43

• NameNode federation

• Storage block pools

• Snapshots (new!)

• Future

• Hierarchical storage management

• Quality-of-Service

• NameNode and DataNode scalability

MapReduce

44

• Programming and execution framework

• Taken from functional programming

• Map – operate on every element

• Reduce – combine and aggregate results

• Abstracts storage, concurrency, execution

• Just write two Java functions

• Contrast with MPI

MapReduce

45

• Constrained, but general

• Can do custom ML not possible in SQL

• Not as efficient as a DB for some queries

• No update in place

• Take data in, transform, write new data out

• Makes fault-tolerance easier

MapReduce Architcture

46

DN 1

NameNode

DN 2 DN 3 DN 4

Rack 1 Rack 2

MapReduce Architcture

47

DN 1

JobTracker

DN 2 DN 3 DN 4

Rack 1 Rack 2

NameNode

TT 3 TT 4 TT 2 TT 1

• Gateway for users
• Assigns tasks to

TaskTrackers
• Tracks job status

MapReduce Architcture

48

DN 1

JobTracker

DN 2 DN 3 DN 4

Rack 1 Rack 2

NameNode

TT 3 TT 4 TT 2 TT 1

• TaskTrackers execute
Map and Reduce
tasks assigned by JT

Word Count Example

49

The cat sat on the mat

The aardvark sat on the sofa

The, 1

cat, 1

sat, 1

on, 1

the, 1

mat, 1

The, 1

aardvark, 1

sat, 1

on, 1

the, 1

sofa, 1

Mapper Input

Mapping

aardvark, 1

cat, 1

mat, 1

on, 2

sat, 2

sofa, 1

the, 4

aardvark, 1

cat, 1
mat, 1
on, 2

sat, 2
sofa, 1

the, 4

aardvark, 1

cat, 1

mat, 1

on [1, 1]

sat [1, 1]

sofa, 1

the [1, 1, 1, 1]

Shuffling Reducing

Final Result

MapReduce Architcture

50

DN 1

JobTracker

DN 2 DN 3 DN 4

Rack 1 Rack 2

NameNode

TT 3 TT 4 TT 2 TT 1

wordcount(<files>)

M1 M2 M3 M4 R1

[cat, 1] [dog, 1] [the, 1] [sat, 1]

MapReduce Architcture

51

DN 1

JobTracker

DN 2 DN 3 DN 4

Rack 1 Rack 2

NameNode

TT 3 TT 4 TT 2 TT 1

wordcount(<files>)

M1 M2 M3 M4 R1

[mat, 1] [bad, 1] [cat, 1] [for, 1]

MapReduce Architcture

52

DN 1

JobTracker

DN 2 DN 3 DN 4

Rack 1 Rack 2

NameNode

TT 3 TT 4 TT 2 TT 1

wordcount(<files>)

M5 M6 M7 M8 R1

[a, 5]
[cat, 2]
[dog, 1]
[the, 4]
[mat, 1]

MapReduce Architcture

53

DN 1

JobTracker

DN 2 DN 3 DN 4

Rack 1 Rack 2

NameNode

TT 3 TT 4 TT 2 TT 1

wordcount(<files>)

R1

[a, 5]
[cat, 2]
[dog, 1]
[the, 4]
[mat, 1]

MapReduce Architcture

54

DN 1

JobTracker

DN 2 DN 3 DN 4

Rack 1 Rack 2

NameNode

TT 3 TT 4 TT 2 TT 1

wordcount(<files>)

R1

[a, 5]
[cat, 2]
[dog, 1]
[the, 4]
[mat, 1]

We’re working on it!

Summary

55

• GFS and MR co-design

• Cheap, simple, effective at scale

• Fault-tolerance baked in

• Replicate data 3x

• Incrementally re-execute computation

• Avoid single points of failure

• Held the world sort record (0.578TB/min)

56

Hadoop ecosystem

Data Processing Pipeline

57

Sqoop

58

Performs bidirectional
data transfers between
Hadoop and almost any
SQL database with a
JDBC driver

Flume

59

Client

Client

Client

Client

Agent

Agent

Agent

A streaming data
collection and
aggregation system
for massive volumes
of data, such as RPC
services, Log4J,
Syslog, etc.

Hive

60

• Relational database

abstraction using a SQL like

dialect called HiveQL

• Statements are executed as

one or more MapReduce

Jobs

SELECT
s.word, s.freq, k.freq

FROM shakespeare
JOIN ON (s.word= k.word)
WHERE s.freq >= 5;

Impala

61

Modern MPP database
built on top of HDFS

Really fast! Written in C++

10-100x faster than Hive

Pig

62

• High-level scripting language

for for executing one or more

MapReduce jobs

• Created to simplify authoring

of MapReduce jobs

• Can be extended with user

defined functions

emps = LOAD 'people.txt’ AS

(id,name,salary);

rich = FILTER emps BY salary >

200000;

sorted_rich = ORDER rich BY

salary DESC;

STORE sorted_rich INTO

’rich_people.txt';

HBase

63

• Low-latency,
distributed, columnar
key-value store

• Based on BigTable
• Efficient random

reads/writes on HDFS
• Useful for frontend

applications

Oozie

64

A workflow engine and

scheduler built specifically

for large-scale job

orchestration on a

Hadoop cluster

Hue

65

• Hue is an open source web-based
application for making it easier to
use Apache Hadoop.

• Hue features
• File Browser for HDFS
• Job Designer/Browser for

MapReduce
• Query editors for Hive, Pig and

Cloudera Impala
• Oozie

Zookeeper

66

• Zookeeper is a distributed

consensus engine

• Provides well-defined concurrent

access semantics:

• Leader election

• Service discovery

• Distributed locking / mutual

exclusion

• Message board / mailboxes

Cloudera Manager

67

End-to-End Administration for CDH

Manage
Easily deploy, configure & optimize clusters 1

Monitor
Maintain a central view of all activity 2

Diagnose
Easily identify and resolve issues 3

Integrate
Use Cloudera Manager with existing tools 4

Cloudera Manager

68

+

DEPLOYMENT &
CONFIGURATIO

N
MONITORING WORKFLOWS

EVENTS &
ALERTS

LOG SEARCH DIAGNOSTICS REPORTING
ACTIVITY

MONITORING

DO-IT-YOURSELF

WITH CLOUDERA

View Service Health & Performance

69

Cloudera Manager Key Features

70

Thank You!

andrew.wang@cloudera.com

@umbrant

mailto:Andrew.wang@cloudera.com

